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bstract

Performance indicators such as national wealth (GDP per capita), R&D intensity (GERD/GDP) and scientific impact (cita-
ions/paper) are used to compare innovation systems. These indicators are derived from the ratio of primary measures such as
opulation, GDP, GERD and papers. Frequently they are used to rank members of an innovation system and to inform decision mak-
rs. This is illustrated by the European Research Area S&T indicators scoreboard used to compare the performance of member states.

A formal study of complex systems has evolved over the past few decades from common observations made by researchers from
any fields. Complex systems are dynamic and many of their properties emerge from the interactions among the entities in them.
hey also have a propensity to exhibit power law or scaling correlations between primary measures used to characterize them.
Katz [Katz, J.S., 2000. Scale independent indicators and research assessment. Science and Public Policy 27, 23–36] showed that

cientific impact (citations/paper) scales with the size of the group (papers). In this paper it will be shown that two other common
easures, R&D intensity and national wealth, scale with the sizes of European countries and Canadian provinces. Some of these

caling correlations are predictable. These findings illustrate that a performance indicator derived from the ratio of two measures
ay not be properly normalized for size.
This paper argues that innovation systems are complex systems. Hence scaling correlations are expected to exist between the

rimary measures used to characterize them. These scaling correlations can be used to construct scale-independent (scale-adjusted)
ndicators and models that are truly normalized for size. Scale-independent indicators can more accurately inform decision makers

ow groups of different sizes contribute to an innovation system. The ranks of member groups of an innovation system by scale-
ndependent indicators can be subtly and profoundly different than the ranks given by conventional indicators. The differences can
esult in a shift in perspective about the performance of members of an innovation system that has public policy implications.

2006 Elsevier B.V. All rights reserved.
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. Introduction
Broadly speaking, an innovation system is composed
f individuals and organizations that directly and indi-
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rectly invest time and energy in the production of sci-
entific and technical knowledge. This knowledge flows
and recombines in complex ways (Kline and Rosenberg,
1986).

Observers of innovation systems, for example,

national systems of innovation, frequently make com-
parisons (Freeman, 1987; Lundvall, 1992; Stoneman,
1995). Invariably they aggregate individuals into groups
or collective entities such as countries, institutions,
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departments and firms. They use quantitative and qual-
itative measures of the inputs, outputs and processes of
these groups to construct performance indicators that are
used to inform decision makers.

It will be argued that innovation systems are complex
where the word complex will be defined using con-
cepts from complex systems research (Baranger, 2001).
Among other things, current complex systems research
shows that a complex system is dynamic and it has
a propensity to exhibit scaling properties (Amaral and
Ottino, 2004; Newman, 2003; West, 2006).

The signature of a scaling property is a power law
correlation between variables of the system or power
law probability distribution of a property of the system.1

Formally a power law is defined by F(x) ∝ xα where
the variable of interest x ∈ [x0, xn] and n > 0 (Newman,
2005). The exponent, α, of the power law relationship is
called the scaling factor. It can be used as an indicator of
a scaling property of the system. The complex systems
research literature will be reviewed in the next section
along with a detailed discussion of scaling properties and
the processes that generate them.

There is plenty of evidence in the literature to show
that innovation systems exhibit scaling properties. For
example, notable observers such as Pareto (1897), Lotka
(1926), Zipf (1949) and de Price (1963) found that inno-
vative human processes like the use of language, the
distribution of wealth and the productivity of innova-
tors exhibit power law correlations and distributions. In
the last century thousands, perhaps even tens of thou-
sands, of research papers have been published illustrat-
ing scaling properties in data describing a wide variety
of innovative human activities. Managers and decision
makers use the notion of scaling when they apply the
‘80–20 rule’, a rule that is based on Pareto’s power law
probability distribution (Juran, 1950). Curiously despite
the prevalence of scaling relationships in human inno-
vative activities almost no one has used them to inform
public policy.

Many of our perceptions about innovation systems
are informed by quantitative indicators. For example,
agencies such as the OECD, Eurostat and the National
Science Board collect measures of such things as pop-
ulation, GDP, GERD and numbers of scientific papers
and citations. The ratios between these measures are

used as performance indicators of such thing as national
wealth (GDP per capita), R&D intensity (GERD/GDP)
and scientific impact (citations/paper). Decision mak-

1 It must be noted that by definition exponential functions do not
scale.
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ers use many types of performance indicators derived
from ratios to inform policies that impact innovation
systems.

The use of performance indicators is exemplified by
the ERA scoreboard. It was developed in response to a
request from the Lisbon Summit of March 2000 for the
Commission to draw up a methodology for benchmark-
ing national research policies using indicators covering
four themes (European Commission, 2003). The stated
aim of these indicators is “to provide a broad overview
of the performances of Member States in relation to the
four themes, using currently available and internation-
ally harmonised statistics”. The scoreboard consists of
20 performance indicators. All of these indicators are
derived from ratios. It is available at the CORDIS sci-
ence and technology indicators web site.2

Frequently it is assumed that the resultant propor-
tion derived from the ratio of two primary measures is
normalized by the denominator. In other words, if the
denominator is a measure of size (e.g., GDP, population
and papers) then the ratio is assumed to be normalized for
size. However, despite warnings from the OECD and oth-
ers (Godin, 2005; Holbrook, 1991; Katz, 2005) measures
like GERD/GDP, GDP/population and citations/paper
are assumed to be useful for comparing regions and coun-
tries of different sizes. Although it may be thought that
by dividing by size the indicator is normalized and valid
comparisons can be made, this is not the case.

Recently it was shown that the amount of recognition
received by scientific groups measured using citations
scales with the number of papers they publish (Katz,
2000, 2005). Between 1981 and 1994 every time a group
doubled the number of scientific papers they published
that were indexed by ISI the amount of recognition
they received by other publications in the ISI database
increased about 2.4 (21.27) times. That is, there is a power
law relationship between citations, c, and the number of
papers, p, where c ∝ p1.27.

A power law correlation exists between the numer-
ator and the denominator of this performance indicator
thus the rules of power laws apply. Applying the rule
y = kxn and therefore y/x = kxn − 1 we find that the ratio
between the numerator and denominator also scales with
the denominator. Therefore, citations/paper scales with
the number of papers. In other words, using the previous
finding it can be said that every time a group doubled its

published output the amount of recognition received per
paper increased about 1.2 (21.27 − 1.0 = 20.27) times.

2 http://www.cordis.lu/indicators/home.html.

http://www.cordis.lu/indicators/home.html
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Katz and Katz, 1999; West et al., 2002) and social
systems (Newman et al., 2002). As mentioned earlier,
J.S. Katz / Research

The amount of scientific impact received by a group
easured using citations/paper scales with the size of

he group measured using papers. The conventional sci-
ntific impact performance indicator is not normalized
or size.

Throughout this paper it will argued that as a matter
f accuracy a performance indicator derived from a ratio
hat exhibits a scaling correlation between the numerator
nd denominator must be scale-adjusted before it is used
n comparisons. A scale-adjusted indicator is called a
cale-independent indicator (Katz, 2000) and it can be
sed to compare groups of vastly different sizes.

van Raan (2005, 2006) argues that the scaling rela-
ionship between citations and papers when used as a

easure of impact does not have to be adjusted for
cale. He says, “one could also argue that a larger impact
s measured on the basis of citations cannot be simply
aved aside as purely a scale-dependent effect. In this
ay groups are ‘punished’ [for] growing because the
umber of citations received by them should be corrected
or size”. It is not a question of punishment but a ques-
ion of accuracy and a better understanding of the nature
f indicators. It may be that some (possibly the large)
re being over rewarded and it is the small that are being
unished.

In Section 3 it will be revealed that two other common
erformance indicators – R&D intensity and national
ealth – scale with size. These findings will be illustrated
sing OECD and Statistics Canada data of the European
nd Canadian innovation systems. The scaling relation-
hips GERD & GDP and GDP & population will be used
o construct a variety of scale-independent indicators and
wo simple scale-independent models. It will be shown
hat scale-independent indicators and models provide
olicy relevant insights into innovation system activi-
ies that are not available using conventional indicators.
he policy relevance of the findings will be summarized

n the final section.

. Complex systems

It is difficult to precisely define a complex system;
owever, it is recognizable by its identifiable charac-
eristics (Amaral and Ottino, 2004; Baranger, 2001).
mongst other things a complex system
has a dynamic structure with interdependent con-
stituents that interact in complex and non-linear ways
is open in the sense that information flows across
its boundaries which in turn are difficult to clearly
identify
35 (2006) 893–909 895

• possesses structures that span many scales
• exhibits emergent behaviours and patterns that are

not caused by a single entity in the system but
may arise from simple rules. Flocking of birds,
swarming of bees, schooling of fish and swirling of
hurricanes are emergent properties found in nature
(Parrish et al., 2002; Peterson, 2000). The value of
a good is an emergent property of an economic
system (Stahel, 2005). And the stock market is a
complex system that has emergent properties deter-
mined by the collective actions of investors (Blok,
2000).

• can self-organize, i.e., its emergent properties may
change its structure or create new structures

• is composed of complex subsystems

A special of kind of complex systems was created
to accommodate living beings (Baranger, 2001). They
are complex adaptive systems (CAS) capable of chang-
ing themselves to adapt to a changing environment and
changing the environment to suit themselves. Among
other strategies they use the interplay between competi-
tion and co-operation to survive and evolve.

Frequently a complex system is represented as a com-
plex network with nodes representing the units and edges
representing the interactions between them (Albert and
Barabasi, 2002; Strogatz, 2001). Researchers have devel-
oped a variety of models to simulate complex systems.
Indicators commonly used to compare innovation sys-
tems have been used to confirm that many important
properties exhibited by these models can be seen in
empirical data (Albert and Barabasi, 2002; Amaral et
al., 2001; Havemann et al., 2005). Examples of these
will be discussed later.

2.1. Scaling and power laws

Most, if not all, complex systems have at least one
common feature. They have a propensity to exhibit
scaling properties (Carlson and Doyle, 2002; Newman,
2000). The identifying signature of a scaling property
is a power law correlation or distribution. They are
common to physical systems (Christensen et al., 2002;
Warhaft, 2002), natural systems (Goldberger et al., 2002;
they describe well-known statistical regularities3 such
as Pareto, Lotka, and Zipf’s laws.

3 Observers of social systems sometimes refer to these statistical
regularities as social laws.
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Recall that the formally a power law relationship is
defined by F(x) ∝ xα were the variable of interest x ∈ [x0,
xn] and n > 0. In real world systems the range of a power
law distribution may be finite since the tail of the dis-
tribution asymptotically approaches a power law as x
gets large (Stanley and Plerou, 2001). In other words, in
real systems the range of an ideal power law relationship
maybe constrained. Power laws are readily identifiable
when they are plotted on a log–log scale because they
appear linear.

The exponent, α, of a power law is called its scaling
factor and it is given by the slope of the linear regression
line drawn through the log values. It is a useful indicator.
For example, consider the trivial example of circle and
sphere. The area and volume increase as the square and
cube of the radius, respectively. The scaling factor for a
circle is 2.0 and for a sphere it is 3.0. It tells us that if
the radius doubles then the area of the circle increases
fourfold (22) and the area of the sphere increases by
eightfold (23). However, these scaling factors are unusual
because they are integers. For most real world complex
systems, the scaling factors are non-integer. For example,
the scaling factor of objects like clouds, plants and the
World Wide Web is between 1.0 and 3.0 (Strogatz, 2005).

2.2. Power law generators

Power laws are generated by a variety of mechanisms
(Mitzenmacher, 2003) ranging from completely deter-
ministic processes (strictly rule based) to completely
non-deterministic processes (stochastic or random). In
fact, Mitzenmacher says, “Power law distributions and
lognormal distributions are quite natural models and can
be generated from simple and intuitive generative pro-
cesses.” Examples of three types of generative models
will be discussed: (1) deterministic generators; (2) non-
deterministic generators; and (3) mixed deterministic
and non-deterministic generators.

2.2.1. Deterministic generators
Ideal exponential growth is deterministic since all past

and future values are predictable. It can be shown that
a pair of exponential processes that are coupled through

a common variable such as time will exhibit a power
law correlation where the scaling factor is given by the
ratio of the exponents of the exponential processes.4 This

4 Assume we are given any two exponential processes x = aept and
y = beqt. Using these two relationships, e = (x/a)1/p = (y/b)1/qt and thus
(x/a)p = (y/b)1/q therefore it can be seen that y = (b/a)q/pxq/p which has
the form of F(x) ∝ xα. In other words, any pair of coupled exponential
processes will exhibit a power law correlation with exponent, α = q/p,
35 (2006) 893–909

relationship was used to demonstrate scaling correlations
between the growth of citations5 and papers in the ISI
database (Katz, 2005). Deterministic power law gener-
ators have been identified that generate scale free net-
works (Barabási et al., 2001; Dorogovtsev et al., 2001).

2.2.2. Non-deterministic generators
Brownian motion, the random motion of liquid and

gas molecules, is an example of a non-deterministic gen-
erator of power law distributions. Stock market processes
and gains and losses from gambling activities generate
brown noise, which is an allusion to Brownian motion
because both have a 1/f2 power spectrum distribution.
Brownian motion contains several power laws distribu-
tions (Blok, 2000; Schroeder, 1991).

A number of models have been proposed to generate
the power laws commonly seen in word frequency distri-
butions of language. All but one of these models is based
on a mixed generator (a random process plus one or more
rules). This type of generator will be discussed in the next
section. In 1957, a researcher proposed a model based
on a monkey typing randomly on a keyboard. The char-
acters were struck with equal probabilities. It has been
mathematically proven that this model generates a rank
word frequency power law distribution (Mitzenmacher,
2003).

2.2.3. Mixed generators
Mixed deterministic and non-deterministic processes

can be generators of power law distributions. A random
multiplicative process is known to generate a lognor-
mal or Gibrat distribution (Gibrat, 1931). This process
is defined by Xt = FtXt−1 where X0 and F0 are the starting
size and the initial growth factor. The growth factor can
be positive or negative representing growth and shrink-
age (negative growth). However, if a random multiplica-
tive process is bounded by a minimum then it will yield
a power law distribution instead of a lognormal distribu-
tion (Mitzenmacher, 2003; Solomon and Agay, 1997).
There is a wide variety of mixed power law generators
with dynamics that are governed by random processes
and one or more rules.

The chaos game (Barnsley, 1988) is a simple exam-

ple. It involves a random number generator and a simple
rule. A player starts playing by placing three points on a
piece of paper and selecting an arbitrary starting point.

and intercept, s = (b/a)q/p, that are predictable from the exponents and
intercepts of the individual exponential processes. This relationship
holds even if the two processes are delayed in time with respect to
each other or if they have different starting values at t = 0.

5 were counted using a 3-year window.
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The European and Canadian innovation systems are
used in this paper for two reasons. First, there is a large
difference between the scales of the systems; by almost
J.S. Katz / Research

andomly one of the three points is chosen and a rule is
pplied. The rule is ‘go half way from the current point
o the randomly selected point and make a point at that
osition’. After thousands of steps the well-known fea-
ures of the Sierpinski triangle or gasket fractal will be
isible in the structure of the dots. The probability dis-
ribution of the sizes of the triangles in the Sierpinski
riangle follows a power law (Schroeder, 1991).

Recent research has demonstrated that the standard
eviation of the growth rate of firms has a scaling cor-
elation with the size of the firms measured using sales
Amaral et al., 2001, 1998). Furthermore, the scaling
elationship remained whether size was measured using
he number of employees, assets, costs of goods sold and
lants, property or equipment. A power law correlation
as also been found between the standard deviation of
rowth rates and the sizes of countries measured using
DP and between the standard deviation of growth rates
f universities and their sizes measured using papers,
atents and R&D expenditure (Plerou et al., 1999).

The web has spawned a variety of research activ-
ties some of which focus on constructing models to
xplain the evolution of its structure (Katz and Cothey,
006). A cumulative advantage (de Price, 1976) or pref-
rential attachment (Barabási, 2003) model has gained
onsiderable favor because it appears to explain fre-
uently observed scaling characteristics. Many inves-
igators have reported that the probability distribution
f in-links and out-links to web pages follow power
aw distributions (Albert and Barabasi, 2002; Barabási
nd Albert, 1999; Faloutsos et al., 1999). The preferen-
ial model assumes that the web grows by continuously
dding new nodes. The links between nodes are added
n a preferential manner. The preference is determined
y the popularity of web pages measured by the number
f in-links. In other words, pages that are linked to more
requently are preferred over other pages. At each step
n the model a new page is created and then an existing
age is randomly selected. The probability that the new
age will link to the existing page is determined by the
umber of in-links to the existing page. Over time the in-
ink probability distribution of the web that is generated
y the model will be a power law.

In summary, a variety of processes generate power
aw correlations and distributions. Unlike some physical
rocesses social activities are never completely deter-
inistic nor are they completely random. Human activity

s complex ranging from the free will of individuals to

he laws of society. It is likely that most, if not all, of
he power law distributions and correlations observed
n complex social systems are generated by mixed pro-
esses. In the next section it will be shown that regional
35 (2006) 893–909 897

and national innovation systems exhibit scaling behav-
iors that emerge with time and exist at points in time.

3. Complex innovation systems

An innovation system is a social construct. Its charac-
ter emerges from the interactions between its members
and the members of other systems. Some of the inter-
actions are more “rule-like” than others because they
are governed by laws, regulations, treaties, etc. Other
interactions are more random because they are governed
by complex social, political and economic forces. Intu-
itively we know that innovation processes and the sys-
tems in which they are embedded must be complex and
adaptive. If we assume they are complex then we expect
them to exhibit scaling properties. Furthermore, these
properties should be evident in measures commonly used
to construct performance indicators of these systems.

3.1. Scaling and innovation systems

The following examples explore scaling correlations
between GERD & GDP and GDP & population for the
European (EU15) and Canadian innovation systems (1)
over time and (2) at points in time. Scale-independent
indicators derived from these relationships are used to
examine characteristics of the two systems.

A scale-independent indicator is an indicator derived
from a power law distribution or correlation. The phrase
scale-independent is used because indicators that have
been derived from a power law are normalized by the
scaling relationship so they can be comparable over a
wide range of sizes. This paper focuses on only two types
of scale-independent indicators: scaling factor indicators
and relative magnitude indicators. Examples of both of
these indicators will be given later.

There are other scale-independent indicators. For
example, the distribution pattern of the data points about
an ideal power law can provide indicators to underly-
ing dynamics (Katz and Katz, 1994, 1999).6 Sometimes
the intercept of a power law is used as an indicator,
particularly in physical systems. Also, some power law
distributions have exponential cut-off points (Mossa et
al., 2002; Newman, 2001) that may be a useful indicator.
any measure the European system is about an order of

6 For example, the common patterns seen in European and Canadian
data presented in Fig. 7 might be indicative of a common dynamic.
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magnitude larger than the Canadian system. Second, the
structures of the two systems are considerably different.
The European innovation system is a collection of 15
national systems that has been evolving into a supra-
national system for about 50 years through a variety
of democratic and legal processes (Schuch, 1998). All
fifteen countries did not join at once. The European Eco-
nomic Community was formed in 1958 and it consisted
of six countries (Germany, France, Italy, the Nether-
lands, Luxembourg, and Belgium). The UK, Ireland and
Denmark joined in 1973, Greece in 1981, Spain and
Portugal in 1986 and Austria, Finland and Sweden in
1995. In contrast, the Canadian innovation system is
composed of 10 provincial and two territorial systems
that has evolved for nearly 135 years into a federal
innovation system (Bührer and Ludewig, 2004). Most
of the provinces had joined the Canadian Federation by
1873. The last provinces to join were Saskatchewan and
Alberta in 1905 and Newfoundland in 1949.

Monies for publicly funded research in the Canadian
system come primarily from the federal government with
smaller contributions from the provincial and territorial
governments. In contrast, publicly funded research in the
European system is funded primarily by national gov-
ernments with smaller contributions from the European
Commission. EC programmes, such as European Frame-
work Programmes have a strong focus on activities that
encourage more cohesion in the European research area.
Similarly, in Canada a variety of government programs
encourages federal cohesion.

The data in the following examples were obtained
from the OECD and Statistics Canada. The Canadian
data are more complete than OECD data. For example,
GERD data are available for every Canadian province
for every year in the time interval while the OECD
data are missing certain values for many European
nations. For analysis purposes, missing European data
were interpolated.7 The economic data for the Canadian
system are in a common currency and the OECD data
have been converted to purchasing power parity at cur-
rent prices in US dollars (PPP $US). The conversion
introduces errors into the OECD data (Neary, 2005) that
are not found in the Canadian data. This can affect the
quality of the indicators built from OECD data.
3.1.1. Scaling over time
Fig. 1 plots the growth of GDP and GERD from 1981

to 2000 for the European Union and Canada. Fig. 1a

7 The exponential growth trend over the time period was used to
interpolate missing GERD values.
35 (2006) 893–909

shows that the European GDP tended to grow exponen-
tially with an exponent of 0.051 ± 0.001. Over the same
period the GERD also tended to grow exponentially with
an exponent of 0.052 ± 0.002. Fig. 1b shows exponential
growth trends in Canada too.

It is apparent from the graphs that neither the GDP nor
GERD exhibited perfect exponential growth. In fact, we
would not expect the growth to be perfectly exponen-
tial since the magnitude of the national and provincial
GERDs and GDPs are determined by the interplay of
many factors. On the other hand, the exponential growth
trend suggests there are some rule-like tendencies such
as interest rates that exist in these systems.

The mathematical relationship given in the footnote
of Section 2.2.1 shows that two coupled exponential
processes will exhibit a scaling correlation. GERD and
GDP are coupled in time, therefore, they should exhibit
a predictable scaling correlation. Using the values for
the exponential growths from Fig. 1 it is predicted that
the scaling factor for the power law correlation between
GERD and GDP for the European innovation system
should be 0.052/0.051 = 1.027. Fig. 2a shows that the
measured value was 1.034 ± 0.028, which is within 1%
of the predicted value. The predicted value for the Cana-
dian innovation system was 0.076/0.053 = 1.418 and the
measured value was 1.418 ± 0.028 (Fig. 2b).

If two measures exhibit a scaling relationship then
the ratio between those measures also exhibits a scal-
ing relationship with the divisor. Consider a power law
relationship given by y = kxα then y/x = kxα−1. If a scal-
ing relationship exists between GERD and GDP then
GERD/GDP should exhibit a scaling relationship with
GDP. Using this relationship the R&D intensity indicator
for the European innovation system is predicted to scale
with GDP with a scaling factor of 0.027 and the Canadian
innovation system with a scaling factor of 0.418. The
measured values were 0.034 ± 0.028 and 0.418 ± 0.028,
respectively. Since the European GERD scaled nearly
linearly with GDP its R&D intensity remained almost
constant over the time interval illustrated by the fact
that its scaling factor was close to zero.8 On the other
hand, the R&D intensity for the Canadian innovation sys-
tem exhibited a tendency to increase 1.33 times (20.418)
when the GDP doubled. This is a strong non-linear
tendency.
What do the scaling factors tell us about these two
innovation systems? The GERD–GDP scaling factor
tells us two things. The size of the scaling factor indi-

8 Only in the special case where α = 1, that is the relationship is
linear, does y/x = k.
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Fig. 1. Growth of GERD and GDP for (A) European innovat

ates whether the GERD is growing faster or slower
han GDP. The magnitude of the scaling factor indi-
ates how much the GERD would be expected to grow as
DP increases. For example, over the 20-year period the
uropean GERD tended to grow 2.05 (21.034) times and

he Canadian GERD tended to grow 2.67 (21.418) times
very time the GDP doubled (21.0). In other words, the
uropean GERD grew almost linearly with GDP and the
anadian GERD grew quite nonlinearly with GDP. This

s evident from the fact that the OECD reported that the
&D intensity for the European innovation system grew

rom 1.67% in 1981 to 1.89% in 2000 for a difference
f 0.22%. On the other hand, the Canadian system grew

rom 1.24% in 1981 to 1.92% in 2000 for a larger differ-
nce of 0.68%.

In summary, the scaling factor, α, can be used as a
cale-independent indicator. In the earlier example it was
em and (B) Canadian innovation system from 1981 to 2000.

used as a measure of the relative growths of two cou-
pled exponential processes. When α = 1 then the relative
growth rates are the same; when α > 1 then GERD is
growing faster than GDP; and when α < 1 then GERD is
growing slower than GDP.

A naming notation will be used from now on to
uniquely identify the scaling factor between the two
variables, X and Y where variable log Y is regressed on
variable log X. The name given is the Y–X scaling factor.
For example, in the previous case the indicator was called
the GERD–GDP scaling factor because it compared the
growth rate of GERD to GDP.

Intersystem scale-independent indicators can also be

produced. For example, since the European and Cana-
dian systems exhibited exponential GDP growth trends
and they are coupled in time they exhibit a scaling cor-
relation. The scaling relationship between the Canadian
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Table 1
European GERD–GDP scaling factors (1981–2000)

Country Population
(‘000)

α SEa R2

Greece 10917 2.58 ±0.06 0.99
Finland 5176 2.05 ±0.05 0.99
Portugal 10225 1.84 ±0.05 0.99
Denmark 5338 1.82 ±0.02 1.00
Spain 39927 1.75 ±0.06 0.98
Sweden 8872 1.57 ±0.05 0.98
Austria 8012 1.50 ±0.03 0.99
Ireland 3799 1.49 ±0.05 0.98
Belgium 10246 1.26 ±0.03 0.99
France 60594 1.11 ±0.04 0.98
Italy 57762 1.11 ±0.09 0.91
Netherlands 15922 1.03 ±0.04 0.98
Germany 82188 0.87 ±0.05 0.95

the origin. This case is a special power law where the
scaling factor is equal to 1.0. The lower dotted line
is a linear regression that was not constrained to pass
through the origin. The solid line is the power law

Table 2
Canadian GERD–GDP scaling factors (1981–2000)

Province Population
(‘000)

α SEa R2

Quebec 7382 1.84 ±0.05 0.99
British Columbia 4060 1.40 ±0.06 0.97
New Brunswick 756 1.38 ±0.14 0.85
Saskatchewan 1022 1.35 ±0.12 0.88
Ontario 11698 1.33 ±0.04 0.98
Newfoundland and Labrador 538 1.21 ±0.09 0.90
Fig. 2. Scaling correlation between GERD and GDP for (A) European
innovation system and (B) Canadian innovation system from 1981 to
2000.

GDP (GDPC) and the European GDP (GDPE) had a scal-
ing factor equal to 1.05 ± 0.03. The GERDC–GERDE
scaling factor had a value of 1.43 ± 0.03. These indi-
cators show that the Canadian GDP and GERD grew
faster than the European GDP and GERD between 1981
and 2000. According to these scaling relationships, if the
European GDP and GERD doubled the Canadian GDP
and GERD would be expected to increase 2.07 (21.05)
and 2.7 (21.43) times, respectively.

Tables 1 and 2 give the GERD–GDP scaling factors
sorted in descending order of magnitude for the nations
and provinces in the European and Canadian innovation
systems. Also, the population in the year 2000 is given
for each nation and province to give the reader a sense
of their sizes.

The standard errors and the R2 values indicate that
the power law correlations have statistical significance.
The GERDs for two of the largest nations in the Euro-
pean system, UK and Germany, did not grow as fast
their respective GDPs. On the other hand, the GERDs of
all Canadian provinces grew faster than their respective

GDPs. There appears to be a tendency for the signifi-
cance to decrease slightly with the size of the nation or
province measured using population. The tables will be
referred to again in later analysis.
United Kingdom 58643 0.73 ±0.02 0.99

a SE is the standard error for α.

3.1.2. Scaling at points in time
Fig. 3a is a log–log plot of 1990 GERD and GDP val-

ues for nations in the European innovation system. The
year 1990 was chosen because it was halfway through
the time interval under consideration. Fig. 3b is a similar
plot for the provinces in the Canadian innovation system.
The following question is being asked of these data. In
1990, did the members of the European and Canadian
innovation systems exhibit a scaling correlation between
GERD and GDP?

To help answer the question three regression lines
have been drawn through the data points. There are
two dotted lines and a solid line. The upper dotted
line is a linear regression constrained to pass through
Nova Scotia 942 1.14 ±0.07 0.94
Alberta 3010 1.09 ±0.08 0.91
Prince Edward Island 138 1.09 ±0.07 0.94
Manitoba 1146 1.06 ±0.08 0.92

a SE is the standard error for α.
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ig. 3. Systemic scaling correlation between GERD and GDP in 1990
or (A) European innovation system and (B) Canadian innovation sys-
em.

egression line. The R2 statistics suggests that both lin-
ar regressions fit the data better than the power law.
owever, a visual inspection9 reveals that neither lin-

ar regression fits the data very well. The variances of
he actual GERD values from the values predicted by
he linear regressions vary with the size of the GDP. In
ther words, the data are heteroscedastic10 and there-
ore the R2 value has little statistical significance. On
he other hand, the power law regression is close to
omoscedastic and it has a good R2 value. The same
bservations are true for the Canadian innovation sys-
em (Fig. 3b).

The GERD–GDP scaling factor will be called a sys-
emic scaling factor because it quantifies the relationship
etween GERD and GDP across members of the system

t a point in time. The system scaling factor is not deter-
ined by any individual entity in the system. It evolves

rom the complex interaction between its members and

9 The residuals were plotted against the estimated y values and it
onfirmed that the data were heteroscedastic.
10 Data are heteroscedastic when the errors in the actual y values from
he predicted values are related to the size of x values.
35 (2006) 893–909 901

between itself and other systems. It is an emergent prop-
erty of the system.

The systemic GERD–GDP scaling factor tells us how
the expenditures on R&D by members of an innovation
system tended to scale at a point in time with the size
of the member economies. For example, the systemic
GERD–GDP scaling factor for the European system was
1.25 telling us that when the size of the national econ-
omy doubled the systemic tendency was for GERD to
increase by 2.4 times (21.25). In the Canadian system,
GERD tended to increase by 2.2 times (21.13).

As shown in the previous section, the R&D intensity is
also expected to show a tendency to scale with GDP. The
measured value of the scaling factor for the scaling rela-
tionship between R&D intensity and GDP for the Euro-
pean innovation system in 1990 was 0.25 ± 0.15 and
for the Canadian innovation system it was 0.13 ± 0.04.
In other words, in the European innovation system the
R&D intensity showed a systemic tendency to increase
1.19 times (20.127) with a doubling in country size mea-
sured by GDP. In the Canadian system, R&D intensity
tended to increase 1.09 times (20.127) as the province
size doubled. In other words, the R&D intensity indica-
tor is not normalized for size. Before it can be used to
compare countries and provinces of different size it has
to be adjusted for scaling relationship between GERD
and GDP. For instance, Austria and Saskatchewan are
1/10 the size of Germany and Ontario, respectively.
The systemic scaling relationships between GERD and
GDP for the European and Canadian innovation sys-
tems indicate that the R&D intensity for Germany was
expected to be about 75% higher than for Austria and
the R&D intensity for Ontario should be approximately
35% higher than for Saskatchewan.11 A relative GERD
indicator that has been scale-adjusted will be introduced
shortly that can be used instead of the R&D intensity for
comparisons.

Some might argue that when the scaling factor is
close to 1.0 the non-linear effects can simply be ignored.
Assume the scaling factor is 1.05 and we wish to compare
two innovation systems where one system has a GDP ten
times larger than the other system. Given a scaling fac-
tor of 1.05, we would expect the larger system to have
a GERD 11.2 times (101.05) larger than the smaller one.
In other words, the larger system would be expected to

have a 12% larger GERD than if we assumed the scaling
factor was 1.0 or linear. A small scaling factor can have
a large effect.

11 The percentages were determined by using the fact that
100.25 = 1.78 and 100.127 = 1.34.



902 J.S. Katz / Research Policy 35 (2006) 893–909

Table 3
Comparison of ERA R&D intensity (1990)

Country GERD/GDP (%) Country GERD′/GERD

Sweden 2.74 Sweden 2.25
Germany 2.67 Finland 1.79
France 2.37 Netherlands 1.49
UK 2.15 Denmark 1.47
Netherlands 2.07 Belgium 1.27
Finland 1.88 Germany 1.26
Belgium 1.59 France 1.21
Denmark 1.57 Austria 1.17
Austria 1.39 UK 1.13
Italy 1.29 Ireland 0.94
Ireland 0.83 Italy 0.67
Spain 0.82 Spain 0.50

Portugal 0.51 Portugal 0.46
Greece 0.34 Greece 0.30

Fig. 3a and b shows a striking difference between
the European and Canadian innovation systems. The
national GERDs in the European system exhibit a larger
range of variances from the GERDs predicted by the
systemic scaling correlation than the range of variances
displayed by the provincial GERDs from the Canadian
systemic scaling correlation. This difference probably
occurs because the European innovation system is more
loosely coupled than federal Canadian system. Later it
will be shown that the variances of the two systems
evolve differently over time.

Tables 3 and 4 give the conventional R&D intensity
indictors and the relative GERD indicators for the mem-
bers of each innovation system in 1990. Countries and
provinces are listed in decreasing rank order by each
indicator. The relative GERD indicator is calculated by

taking the ratio between the actual GERD and the GERD
predicted by the measured systemic scaling correlation.
For example, Table 3 shows that the UK had a R&D

Table 4
Comparison of Canadian R&D intensity (1990)

Province GERD/GDP
(%)

Province GERD′/
GERD

Quebec 1.69 Nova Scotia 1.33
Ontario 1.57 Quebec 1.22
Nova Scotia 1.39 NFL 1.15
NFL 1.12 Ontario 1.05
Manitoba 1.09 Manitoba 0.99
Alberta 1.07 New Brunswick 0.98
New Brunswick 1.00 PEI 0.91
British Columbia 0.97 Saskatchewan 0.88
Saskatchewan 0.95 Alberta 0.85
PEI 0.74 British Columbia 0.76

NFL: Newfoundland and Labrador; PEI: Prince Edward Island.
Fig. 4. Variance of the relative GERDs for the European and Canadian
innovation systems.

intensity of 2.15% and a relative GERD of 1.13. The
UK is ranked 4th by the R&D intensity indicator and
9th by size-adjusted relative GERD indicator. There is a
subtle and profound difference in the ranking of Euro-
pean countries and Canadian provinces once GERD has
been adjusted for the size of the country and province.

The relative GERD indicators for the European inno-
vation system ranged from about 0.30 to 2.25. In com-
parison the relative GERD indicators for the Canadian
systems ranged from about 0.75 to 1.35. An analysis
of the variances from the population mean was per-
formed assuming that the nations and provinces listed
in the tables represent the entire European and Canadian
innovation systems. This assumption is not quite true
because Luxembourg and two Canadian territories have
not been included due to lack of GERD data. Also, Statis-
tics Canada reports the Federal funding for the Nation
Capital Region12 (NCR) separate from the provincial
funding. The NCR values accounted for approximately
3% of the total GERD in 2000 and they have not included.

The variance from the population mean of the relative
GERDs for each innovation system was calculated for
each year and the values are plotted in Fig. 4. It can
be seen that the variance for the European innovation
system decreased from above 0.40 to about 0.29 in the
first half of the time period and levelled off for the second
part of the time period. On the other hand, the variance
from the population mean for the Canadian innovation
system was about 1/10 as large as the variance for the
European innovation system and it varied comparatively

little over the time period.

The larger variances of the relative GERD in the
European innovation system compared to the Canadian

12 Canada’s National Capital region is centred upon the cities of
Ottawa in Ontario and Gatineau in Quebec.
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Table 1 and Fig. 5a give clues as to why the Euro-
pean systemic scaling factor decreased with time. The
GERDs of the small and medium sized nations tended to
grow significantly faster than their respective GDPs. In
J.S. Katz / Research

nnovation system can be partially explained by the time
pan over which the innovation systems have been evolv-
ng and the differences in their governance structures.

ost Canadian provinces have been in the Canadian
onfederation for over 100 years but some European
ations have only been in the European Union for a cou-
le of decades. Also, Europe is a union based on treaties.
anada is a confederation with a central federal govern-
ent. The governance of European innovation system is
ore decentralized than the Canadian system. It seems

atural to assume that the characters of the two innova-
ion systems will be different. For example, the European
nion has less influence on national R&D expenditures

han the Federal government has over the R&D expendi-
ures by the provinces. Less variance from the systemic
caling trend could be indicative of a system whose mem-
ers are more tightly integrated. Perhaps time-dependent
ariance from the systemic scaling trend can be used as
n indicator of systemic integration.

.2. A scale-independent model of an innovation
ystem

The scaling relationships between GERD and GDP
ver time and at points in time can be combined to build a
omposite scale-independent model that show how they
volved together.

Fig. 5a and b contains log–log plots of GERD versus
DP for the European and Canadian innovation systems.
he circles are the 1990 data points seen in Fig. 3a and
, respectively. The dotted lines are the 1990 regression
ines seen in the same figures. The long solid dark lines
re power law regressions at two other points in time
cross the national and provincial systems of innovation
n 1981 (lower) and 2000 (upper). The systemic scaling
actors and R2 values for the three regression lines are
iven in the top left hand corner of the figures.

The short light lines in the figures are power regres-
ion lines representing the scaling correlation between
he exponential growth rates of GERD and GDP for each
ation and province. The scaling factors are the slopes
f the power law regression lines and they were given
n Tables 1 and 2. For example, in Fig. 5a the short line
abelled UK for the United Kingdom gives the scaling
orrelation between the exponential growth rates of the
ERD and GDP from 1981 to 2000. The scaling factor
as 0.73 indicating that the UK GERD did not grow as

ast as its GDP. On the other hand, the short line labelled

IN for Finland had a scaling factor of 2.05. Its GERD
rew much faster than its GDP.

Fig. 6 is a plot of the values of the systemic
ERD–GDP scaling factors for the European and Cana-
Fig. 5. Scale-independent GERD–GDP models of the (A) European
innovation system and (B) Canadian innovation system from 1981 to
2000.

dian systems over the time period. The system scaling
factor for the European innovation system had an obvi-
ous decline from 1.31 ± 0.19 in 1981 to 1.02 ± 0.15
in 2000. The Canadian systemic scaling factor was
1.09 ± 0.06 in 1981 and 1.14 ± 0.07 in 2000.
Fig. 6. Value of the GERD–GDP systemic scaling factor over time for
European and Canadian innovation systems.



Policy 35 (2006) 893–909

Table 5
European innovation system (1996–2000)

Country α SEa R2

Greece 2.38 ±0.44 0.91
Finland 2.16 ±0.20 0.97
Austria 2.06 ±0.20 0.97
Denmark 1.94 ±0.15 0.98
Portugal 1.92 ±0.24 0.95
Germany 1.84 ±0.13 0.98
Belgium 1.70 ±0.05 1.00
Spain 1.53 ±0.13 0.98
Sweden 1.38 ±0.19 0.95
Italy 1.28 ±0.16 0.96
United Kingdom 0.98 ±0.14 0.94
Netherlands 0.75 ±0.15 0.89

to be lower that those seen in Tables 1 and 2 where a
20-year observation window was used.

The two models were used to predict the 2005 GERD
and GDP values which were then used to calculate the

Table 6
Canadian innovation system (1996–2000)

Province α SEa R2

Prince Edward Island 4.24 ±0.36 0.98
British Columbia 2.52 ±0.31 0.96
Saskatchewan 2.45 ±0.80 0.76
Manitoba 2.34 ±0.61 0.83
904 J.S. Katz / Research

contrast the GERD of the larger nations like Italy, UK,
France and Germany grew close to the same as or slower
than their respective GDPs. The systemic tendency of
the European innovation system was for the small and
medium sized members to force the lower GDP end of
the systemic scaling correlation up with time and the
larger nations tended to move the upper end down or at
least maintain a level close to status quo. Overall, the
systemic GERD–GDP scaling factor for the European
innovation system changed from being quite non-linear
(1.31) to being more linear (1.02). If the trend continues
it will become non-linear again as GERD will be growing
at a slower rate than GDP. In fact, recently the European
Commission released a statement on July 2005 saying
that stagnation of R&D intensity is a major threat to the
European knowledge-based economy.13

In comparison, the GERDs of every Canadian
province grew close to or faster than their respective
GDPs. The larger provinces, particularly Quebec, grew
their GERDs at rates similar in magnitude to the rates
of the small- and medium-sized European nations. It is
unclear if the tendency of the systemic GERD–GDP scal-
ing factor for the Canada innovation system is increasing
or perhaps fluctuating around 1.1 or thereabout. This
issue will be explored in the next section.

3.3. Using a scale-independent model

It was demonstrated in the previous sections that scal-
ing correlations exist between GERD and GDP across
European nations and Canadian provinces at points in
time. Also, it was shown that the value of the systemic
scaling factor can change over time. The systemic scal-
ing factors are not mathematically predictable from the
underlying exponential growth rates; however, they can
be measured. The exponential growth trends can be used
to predict future values of GERD and GDP and then these
values can be used to measure the systemic scaling factor
at a point in the future.

Consider the following. If GERD and GDP had exhib-
ited perfect exponential growth then their future values
would be exactly predictable and the future values of the
systemic scaling factor could be accurately measured.
In fact, if the exponential growth was prefect then all
past and future values could be predicted from any two

consecutive years of data. However, GERD and GDP do
not exhibit exactly exponential growth rates; they only
exhibit a tendency to grow exponentially. It takes more
than two consecutive years of data to identify the trend.

13 ftp://ftp.cordis.lu/pub/indicators/docs/kf2005 pressrelease.doc.
France 0.74 ±0.11 0.94
Ireland 0.66 ±0.04 0.99

a SE is the standard error for α.

The longer the time window over which the observa-
tions are made the more accurately the trend can be
predicted. For example, the scale-independent models
in the previous section were constructed using a 20-year
time window. It could have been built using a differ-
ent size of time-window. A smaller observation window
would capture more recent trends but at the cost of losing
longer term accuracy in the model. Scale-independent
models were constructed using 20- and 5-year observa-
tion time windows and then they were used to predict
the size of national and provincial GERDs and GDPs in
the year 2005.

Tables 5 and 6 give the scaling factor for the power law
correlation between GERD and GDP measured using
the 5-year observation window from 1996 to 2000. As
expected, the R2 values for these scaling factors tended
Nova Scotia 1.74 ±0.28 0.93
Ontario 1.55 ±0.14 0.97
Quebec 1.53 ±0.12 0.98
Newfoundland Labrador 1.00 ±0.18 0.91
New Brunswick 0.70 ±0.58 0.33
Alberta 0.58 ±0.19 0.76

a SE is the standard error for α.

ftp://ftp.cordis.lu/pub/indicators/docs/kf2005_pressrelease.doc
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005 systemic scaling factors. The European systemic
caling factor was predicted to be 0.93 ± 0.12 using a
0-year observation window and 0.92 ± 0.15 using a
-year observation window. The values of the system
caling factor for the Canadian innovation system were
rojected to be 1.22 ± 0.06 and 1.08 ± 0.09, respectively.
hese findings suggest that the systemic scaling factor

or the European innovation system will tend to decrease
nd in fact the GERD is anticipated to grow slower than
DP. However, it is still not clear what will happen to

he systemic scaling factor for the Canadian innovation
ystem other than it will likely stay well above 1.0.

.4. Another scale-independent view

Population is an important measure of the size of
n economic system. It is used to calculate such things
s GDP per capita, an indicator that is frequently used
o compare the income of nations. We know from the
receding discussion that the growth of GDP can be
pproximated by an exponential growth trend. An exami-
ation of the growth trends of the European and Canadian
opulations showed that they tended to growth exponen-
ially too. Over the 20-year time interval the European
opulation tended to grow by 0.31% per annum and the
anadian population grew by 1.16% per annum.

Fig. 7 is a log–log plot of GDP versus population
or Europe and Canada. A predictable scaling correla-
ion exists between these two measures. The predicted
alue of the scaling factor for the European innovation
ystem was 0.051/0.003 = 16.30. The measured value
as 15.96. The predicted value of the scaling factor for

he Canadian innovation system was 0.053/0.012 = 4.56.
he measured value was 4.54 ± 0.18.

In both systems the actual data exhibit similar pat-
erns of distribution about the predicted scaling trend
ines. This pattern might be indicative of other under-
ying trends in such things as migration and economic
actors. This requires further investigation.

It can be said with confidence that the scaling rela-
ionship between GDP and population in Europe and
anada observed from 1981 to 2000 is reasonably pre-
ictable. It tells us that a doubling of the population
ould be expected to increase GDP by nearly 638,000

imes (215.96) in Europe but only 23.6 (24.56) times in
anada. The large difference in the scaling factors can
e explained by the fact that the GDPC–GDPE scaling
actor was 1.03 and the POP –POP scaling factor was
C E
easured to be 3.69. This indicates that while the Euro-

ean and Canadian GDPs are growing at similar rates
he Canada’s population was growing nearly four times
s fast as the European population. It will take Europe a
Fig. 7. Scaling correlation between GDP and population for (A)
Europe and (B) Canada from 1981 to 2000.

much longer to double its size that it will take Canada.
The GDP–POP scaling factors also indicate that GDP
per capita would expected to increase 32,000 (214.96)
and 12 (23.56) fold, respectively, each time the GDP
doubles.

Figs. 8 and 9 and Tables 7 and 8 give the highlights
of scale-independent models for Europe and Canada
based on the exponential growth of population and GDP
between 1981 and 2000. Fig. 8a contains the log–log
plots of GDP versus population for Europe. As shown in
Fig. 5a, the circles are the 1990 data points and there are
three power law regression lines. The dotted line is the
regression line through the 1990 data. The lower line is
the regression line through the 1981 data and the upper
line is through the 2000 data. The scaling factors of the
regression lines are given in the upper right hand corner
of the graph. The shorter lines give the scaling corre-
lation between GDP and population for each European
country. Fig. 8b contains a similar plot for Canada. Fig. 9
is a plot of the value of the systemic scaling factor over
time.

Tables 7 and 8 show that the reliability of the
GDP–population scaling factors for some smaller

nations and provinces are questionable. For example, the
GDP–population scaling factor for Saskatchewan has a
large standard error and a low R2 value. This occurred
because while the provincial GDP exhibited exponen-
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Table 7
European GDP–population scaling factors

Country α SEa R2

Italy 33.59 ±3.80 0.81
Portugal 25.15 ±6.47 0.46
United Kingdom 23.21 ±1.00 0.97
Spain 22.55 ±0.87 0.97
Belgium 19.01 ±1.20 0.93
Denmark 17.39 ±1.81 0.84
Ireland 16.70 ±1.75 0.84
Germany 12.51 ±1.19 0.86
Austria 11.86 ±0.97 0.89
Finland 11.18 ±0.67 0.94
France 10.42 ±0.13 1.00
Sweden 10.06 ±0.77 0.90
Fig. 8. Scale-independent GDP–population model of (A) Europe and
(B) Canada from 1981 to 2000.

tial growth the population had both positive and nega-
tive growth periods. Also, the scaling factors in Europe
tended to be larger and had less variation in their ranges
than those for Canada. This is illustrated by the fact that
the scaling factors in Europe ranged from 8.09 ± 0.20 for

Greece to 33.40 ± 3.80 for Italy and had an average mag-
nitude of 16.5. In Canada they ranged from −6.01 ± 1.58
for NL to 14.8 ± 0.08 for New Brunswick with an aver-
age magnitude of 6.4.

Fig. 9. GDP–population systemic scaling factor for the Europe and
Canada from 1981 to 2000.
Netherlands 8.95 ±0.21 0.99
Greece 8.09 ±0.20 0.99

a SE is the standard error for α.

Fig. 9 suggests that the systemic GDP–population
scaling factor is decreasing for Europe and Canada. It
was quite constant in Europe staying around 1.02–1.04
until the mid 1990s and then declined dipping below
1.0 in 1998. Over the same interval the systemic
GDP–population scaling factor for Canada decreased
from 1.16 and then appeared to level off around 1.1.

Fig. 8b illustrates an interesting point. A scale-
independent model can accommodate exponential
decreases. Newfoundland and Labrador (NL) exhibited
a decline in population and GDP over the 20 year time
frame as seen by the negative slope of its power law
regression line. Also, a scale-independent model can
accommodate the case where one variable exhibits expo-
nential growth and the other exponential decay.
3.5. Summary

Complex systems are expected to exhibit scaling rela-
tionships. If innovation systems are complex then we

Table 8
Canadian GDP–population scaling factors

Province α SEa R2

New Brunswick 14.78 ±0.89 0.94
Prince Edward Island 10.71 ±0.60 0.95
Nova Scotia 10.38 ±0.43 0.97
Manitoba 9.20 ±0.30 0.98
Quebec 7.27 ±0.38 0.95
Saskatchewan 5.12 ±4.17 0.08
Ontario 3.81 ±0.18 0.96
Alberta 3.37 ±0.16 0.96
British Columbia 2.77 ±0.12 0.97
Newfoundland and Labrador -6.01 ±1.58 0.44

a SE is the standard error for α.
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xpect to find scaling correlations between measures
ommonly used to construct conventional performance
ndicators.

Scaling correlations between GERD & GDP and GDP
population have been shown for the European and

anadian innovation systems. The scaling correlations
cross time are predictable from the underlying exponen-
ial growths of GERD, GDP and population. The scal-
ng correlations that exist across national and provincial
nnovation systems at points in time are not predictable
ut they are measurable.

The European and Canadian innovation systems
xhibit emergent properties. For example, the systemic
caling relationship between GERD & GDP and GDP &
opulation at points in time are not predictable and they
re not solely determined by any national or provincial
nnovation system. The systemic scaling relationships
re determined by the complex activities of the member
ystems within the European and Canadian innovation
ystems. Furthermore, the systemic scaling factor
an change with time indicative of another emergent
roperty.

Conventional and scale-adjusted performance indi-
ators were constructed from common used statistical
easures. The scaling correlation between the numer-

tor and denominator were measured at points in time
nd across time. These correlations were then used
o scale adjust the conventional indicator properly for
ize. It was then shown how these scale-independent
ndicators could used to construct scale-independent

odels that compared the evolution of the European
upranational and Canadian federal innovation systems
etween 1981 and 2000.

. Policy relevance

R&D intensity, GDP per capita and citations per
aper14 are performance indicators commonly used to
ompare innovation systems. Governments and agen-
ies use them to set targets and inform public policy.
or example, in 2002 the Lisbon Summit Strategy set
target to increase European R&D spending to 3% of
DP by 2010. This common goal can only be accom-
lished by individual European nations modifying their

&D spending targets so that the European innovation

ystem quickly and efficiently moves toward its target.
t has been shown that the conventional R&D intensity
ndicator might be not normalized for size. As a result,

14 Scaling correlations between citations and papers have been shown
n my previous papers (Katz, 2005).
35 (2006) 893–909 907

decision makers can be mislead about the role of differ-
ent sized groups in the overall system.

The ERA scoreboard is composed of 20 performance
indicators derived from ratios of primary measures. It
is likely that some, if not many, of these indicators
exhibit scaling relationships between primary measures
and therefore these indicators are not normalized for size.
Each indicator should be tested to see if it has to be
scale-adjusted before it is used to inform national policy
makers who set national and European goals.

An innovation system is complex. It is expected to
display predictable and measurable scaling properties.
Unfortunately, our perceptions about innovation systems
are only informed by indicators based on linear assump-
tions even though our observations tell us that they
behave differently. A renaissance occurred in the natural
sciences when the study of chaotic processes15 and frac-
tal geometry taught us that power law correlations and
distributions can be used to characterize the properties
of complex systems. A similar renaissance could occur
in the study of social systems if scale-independent indi-
cators and models were be used to inform public policy.
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and an anonymous reviewer for their insightful com-
ments and suggestions. Finally, the author would like
to thank his father, Leon Katz, for the many years of
discussion and assistance in developing the theory of
scale-independent indicators. He is lovingly missed.

References

Albert, R., Barabasi, A.L., 2002. Statistical mechanics of complex

networks. Reviews of Modern Physics 74, 47–97.

Amaral, L.A.N., Ottino, J.M., 2004. Complex networks: augmenting
the framework for the study of complex systems. European Phys-
ical Journal B 38, 147–162.

15 A chaotic system is a nonlinear dynamical system sensitive to initial
conditions. Its behavior can appear random even though the generating
process is deterministic.



Policy
908 J.S. Katz / Research

Amaral, L.A.N., Gopikrishnan, P., Plerou, V., Stanley, H.E., 2001. A
model for the growth dynamics of economic organizations. Physica
A 299, 127–136.

Amaral, L.A.N., Buldyrev, S.V., Havlin, S., Salinger, M.A., Stan-
ley, H.E., 1998. Power law scaling for a system of interacting
units with complex internal structure. Physical Review Letters 80,
1386–1388.

Barabási, A.-L., 2003. Emergence of scaling in complex networks.
In: Bornholdt, S., Schuster, H.G. (Eds.), Handbook of Graphs and
Networks: From the Genome to the Internet. Wiley.

Barabási, A.-L., Albert, R., 1999. Emergence of scaling in random
networks. Science 286, 509–512.

Barabási, A.-L., Ravasza, E., Vicsek, T., 2001. Deterministic scale-free
networks. Physica A 299, 559–564.

Baranger, M., 2001. Chaos, complexity, and entropy: A physics talk
for non-physicists. Wesleyan University Physics Dept. Colloquium,
available at http://necsi.org/projects/baranger/cce.pdf.

Barnsley, M., 1988. Fractals Everywhere. Academic Press Inc.
Blok, H.J., 2000. On the nature of the stock market: simulation and

experiments, Doctoral thesis, Department of Physics and Astron-
omy, University of British Columbia.

Bührer, S., Ludewig, N., 2004. A comparative guide to multi actors
and multi measures programmes (MAPS) in RTDI policy. Wien
StarMAP project. Technologie Impulse Gesellschaft, Vienna.

Carlson, J.M., Doyle, J.C., 2002. Complexity and robustness. Proceed-
ings of the National Academy of Sciences 99, 2538–2545.

Christensen, K., Danon, L., Scanlon, T., Bak, P., 2002. Unified scal-
ing law for earthquakes. Proceedings of the National Academy of
Sciences 99, 2509–2513.

de Price, S.D.J., 1963. Little Science, Big Science. Columbia Univer-
sity Press.

de Price, S.D.J., 1976. A general theory of bibliometric and other cumu-
lative advantage processes. Journal of the American Society for
Information Science 27, 292–306.

Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F. 2001. Pseudofractal
Scale-free Web. arXiv:cond-mat/0112143, 1, 1–5.

European Commission, 2003. Towards a European Research Area,
Special Edition: Indicators for Benchmarking of National Research
Policies.

Faloutsos, M., Faloutsos, P., Faloutsos, C., 1999. On power law rela-
tionships of the Internet topology. Sigcomm, 1–12.

Freeman, C., 1987. Technology and Economic Performance: Lessons
From Japan. Pinter Publishers.
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