What is NanoTechnology?

NanoTechnology involves development of materials (and even complete systems) at the atomic, molecular, or macromolecular levels in the dimension range of approximately 1-500 nanometers.Current research looks to provide detailed understanding of unique properties that materials exhibit at the NanoScale.Current focus of the research is positioned to create and use structures, devices, and systems that have unique and often contradictory properties as well as enhanced functions because of their small and/or intermediate size.NanoTechnology research and development includes control at the NanoScale and integration of NanoScale structures into larger material components, systems, and architectures as well as automated systems for the production of NanoMaterials and the automatic assembly of structures and systems.

History of NanoTechnology


NanoTechnology first gained recognition after Nobel Laureate, Richard Feynman, presented his talk, "There's Plenty of Room at the Bottom" to the American Physical Society in 1959.Activity surrounding NanoTechnology began to slowly increase over the next few decades.In 1988, Eric Drexler taught the first course on NanoTechnology.In that program, he suggested the possibility of nanosized objects that were self-replicating. Slow growth in this area of scientific investigation continued.The next major milestone was when Rice University Professor Richard Smalley won the 1996 Nobel Prize for discovering a new form of carbon: a molecule of sixty carbon atoms (referred to as C60).Today C60 has become one of a growing number of building blocks for a new class of nanosized materials.
The advancements in NanoTechnology really began to accelerate in the late 1990s.NanoTechnology captured the thoughts and imagination of scientists and venture capitalists after an entire issue of Scientific American addressed the promise of this new technology.

Current State of NanoTechnology


Research into NanoMaterials spans a significant spectrum of areas. Advanced material companies are producing innovative products in areas such as coatings, industrial powders, chemicals, and carbon nanotubes. Today, real world application of NanoTechnology exists in commercial business. About two-dozen serious applications of NanoMaterials and process have been fielded ranging from non-scuff floor tile to high strength brackets for running boards on vehicles to high temperature protective materials for spacecraft.While NanoMaterials are a significant portion of today's focus, several other areas are equally as promising.

The Smalley Institute of nanotechnical research (for real!).

K. Eric Drexler’s Engines of Creation, -- capabilities that Drexler envisioned 20 years ago.

Nel, A., Xia, T., Madler, L. and Li, Ning (2006). Toxic Potential of Materials at the Nanolevel. Science 311(5761), pp. 622-627.

.

Exaptation

links